Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Res Sq ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38645164

ABSTRACT

Biomarkers play a crucial role in advancing precision medicine by enabling more targeted and individualized approaches to diagnosis and treatment. Various biofluids, including serum, plasma, cerebrospinal fluid (CSF), saliva, tears, pancreatic cyst fluids, and urine, have been identified as rich sources of potential for the early detection of disease biomarkers in conditions such as cancer, cardiovascular diseases, and neurodegenerative disorders. The analysis of plasma and serum in proteomics research encounters challenges due to their high complexity and the wide dynamic range of protein abundance. These factors impede the sensitivity, coverage, and precision of protein detection when employing mass spectrometry, a widely utilized technology in discovery proteomics. Conventional approaches such as neat plasma workflow are inefficient in accurately quantifying low-abundant proteins, including those associated with tissue leakage, immune response molecules, interleukins, cytokines, and interferons. Moreover, the manual nature of the workflow poses a significant hurdle in conducting large cohort studies. In this study, our focus is on comparing workflows for plasma proteomic profiling to establish a methodology that is not only sensitive and reproducible but also applicable for large cohort studies in biomarker discovery. Our investigation revealed that the SeerProteographXT workflow outperforms other workflows in terms of plasma proteome depth, quantitative accuracy, and reproducibility while offering complete automation of sample preparation. Notably, SeerProteographXT demonstrates versatility by applying it to various types of biofluids. Additionally, the proteins quantified widely cover secretory proteins in peripheral blood, and the pathway analysis enriched with relevant components such as interleukins, tissue necrosis factors, chemokines, and B and T cell receptors provides valuable insights. These proteins, often challenging to quantify in complex biological samples, hold potential as early detection markers for various diseases, thereby contributing to the improvement of patient care quality.

2.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301010

ABSTRACT

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Ikaros Transcription Factor , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Proteolysis , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Ikaros Transcription Factor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Proteolysis/drug effects , Drug Resistance, Neoplasm/drug effects
3.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38366593

ABSTRACT

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Subject(s)
Dietary Fats , Ferroptosis , Phospholipids , Fatty Acids , Phosphatidylcholines , Phospholipids/chemistry , Phospholipids/metabolism , Reactive Oxygen Species , Dietary Fats/metabolism
4.
J Cachexia Sarcopenia Muscle ; 15(2): 536-551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221511

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Mice , Animals , Dogs , Cardiomyopathy, Dilated/etiology , Dystrophin/genetics , Dystrophin/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Mice, Inbred mdx , Calcium/metabolism , Proteomics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibrosis
5.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37944523

ABSTRACT

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Subject(s)
Ferroptosis , Iron Overload , Animals , Mice , Caenorhabditis elegans , Oleic Acid/pharmacology , Peroxisome Proliferator-Activated Receptors , Iron Overload/drug therapy , Iron , Phospholipid Ethers
6.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38116029

ABSTRACT

Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights: The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.

7.
PNAS Nexus ; 2(11): pgad336, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954156

ABSTRACT

In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.

8.
Sci Transl Med ; 15(715): eadf8977, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37756377

ABSTRACT

Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-ß signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.


Subject(s)
Antineoplastic Agents , Chemotherapy-Related Cognitive Impairment , Cognitive Dysfunction , Animals , Mice , Ryanodine Receptor Calcium Release Channel , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Brain , Doxorubicin/adverse effects
9.
Nat Neurosci ; 26(8): 1365-1378, 2023 08.
Article in English | MEDLINE | ID: mdl-37429912

ABSTRACT

Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.


Subject(s)
Cognitive Dysfunction , Heart Failure , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Calcium/metabolism , Cognitive Dysfunction/etiology , Heart Failure/metabolism , Phosphorylation , Quality of Life , Ryanodine Receptor Calcium Release Channel/metabolism , Transforming Growth Factors/metabolism
10.
Cancer Cell ; 41(7): 1207-1221.e12, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37327789

ABSTRACT

The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.


Subject(s)
B7-H1 Antigen , Melanoma , Mice , Animals , B7-H1 Antigen/genetics , T-Lymphocytes , CD58 Antigens/chemistry , CD58 Antigens/metabolism , Melanoma/genetics , Melanoma/metabolism , Lymphocyte Activation
11.
STAR Protoc ; 4(3): 102381, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355991

ABSTRACT

Formalin-fixed paraffin-embedded (FFPE) samples are valuable archived bio-specimens of individuals and are commonly used in biomedical research. Here, we present a protocol for deep proteomic profiling of FFPE specimens using a spectral library-free approach. We describe steps for FFPE tissue collection, tissue lysis, homogenization, protein lysate cleanup, on-beads digestion, and de-salting. We then detail data acquisition and statistical analysis. This protocol is highly sensitive, reproducible, and applicable for high-throughput proteomic profiling and can be used on various types of specimens.

12.
Cell Rep ; 42(5): 112509, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37178118

ABSTRACT

In tissue development and homeostasis, transforming growth factor (TGF)-ß signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-ß signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-ß signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-ß gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-ß signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Humans , Transforming Growth Factor beta/metabolism , Optogenetics , Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Signal Transduction , Chondrogenesis , Cells, Cultured , Chondrocytes
13.
EBioMedicine ; 92: 104628, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37245481

ABSTRACT

BACKGROUND: The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains. METHODS: An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples. LE/Lys isolated from samples of JNCL patients were compared with age-matched unaffected controls and Niemann-Pick Type C (NPC) disease patients. Indeed, mutations in NPC1 or NPC2 result in the accumulation of cholesterol in LE/Lys of NPC disease samples, thus providing a positive control. The lipid and protein content of LE/Lys was then analysed using lipidomics and proteomics, respectively. FINDINGS: Lipid and protein profiles of LE/Lys isolated from JNCL patients were profoundly altered compared to controls. Importantly, cholesterol accumulated in LE/Lys of JNCL samples to a comparable extent than in NPC samples. Lipid profiles of LE/Lys were similar in JNCL and NPC patients, except for levels of bis(monoacylglycero)phosphate (BMP). Protein profiles detected in LE/Lys of JNCL and NPC patients appeared identical, except for levels of NPC1. INTERPRETATION: Our results support that JNCL is a lysosomal cholesterol storage disorder. Our findings also support that JNCL and NPC disease share pathogenic pathways leading to aberrant lysosomal accumulation of lipids and proteins, and thus suggest that the treatments available for NPC disease may be beneficial to JNCL patients. This work opens new avenues for further mechanistic studies in model systems of JNCL and possible therapeutic interventions for this disorder. FUNDING: San Francisco Foundation.


Subject(s)
Lysosomal Storage Diseases , Niemann-Pick Disease, Type C , Humans , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Cholesterol/metabolism , Lysosomal Storage Diseases/metabolism , Proteins/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Chaperones/genetics
14.
Cancer Discov ; 13(3): 702-723, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36445254

ABSTRACT

LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE: EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Neurilemmoma , Transcription Factors , Animals , Humans , Mice , Carcinogenesis , Cell Transformation, Neoplastic , ErbB Receptors/genetics , Mutation , Neurilemmoma/genetics , Neurilemmoma/metabolism , Neurilemmoma/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitins/genetics
15.
Cell Chem Biol ; 29(12): 1680-1693.e9, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36423641

ABSTRACT

Encouraged by the dependence of drug-resistant, metastatic cancers on GPX4, we examined biophysical mechanisms of GPX4 inhibition, which revealed an unexpected allosteric site. We found that this site was involved in native regeneration of GPX4 under low glutathione conditions. Covalent binding of inhibitors to this allosteric site caused a conformational change, inhibition of activity, and subsequent cellular GPX4 protein degradation. To verify this site in an unbiased manner, we screened a library of compounds and identified and validated that an additional compound can covalently bind in this allosteric site, inhibiting and degrading GPX4. We determined co-crystal structures of six different inhibitors bound in this site. We have thus identified an allosteric mechanism for small molecules targeting aggressive cancers dependent on GPX4.


Subject(s)
Neoplasms , Humans , Allosteric Site
17.
Methods Mol Biol ; 2546: 401-409, 2022.
Article in English | MEDLINE | ID: mdl-36127607

ABSTRACT

Utilizing biofluids to identify cancer biomarkers has received considerable attention in the past decade. In this regard, serum and urine are convenient biofluids to noninvasively recapitulate information usually indicated by traditional tissue biopsies. In particular, we are interested in exploring the extracellular vesicle (ECV)-containing compartment of these fluids as a targeted source for cancer biomarker discovery. ECVs are membrane-enclosed particles, comprising of various fractions including exosomes, microvesicles, and apoptotic bodies. In both physiological and pathological states such as cancer, ECVs carry a rich load of molecular and protein cargoes, which aid in mediating intercellular communication between cells from various tissue types. Here we successfully enriched ECVs using a simple, low-cost, optimized method that we have developed; it is generalizable for the analysis of ECVs from multiple sample types. Such procedures are necessary as ECVs are nanoparticles that contain a treasure trove of large numbers of biomarkers each present at very low levels. Sample processing procedures can enrich for these vesicles and allow for the enhanced detection of proteins in downstream applications such as comprehensive proteomics methods using data-independent acquisition (DIA) and LC-MS/MS.


Subject(s)
Extracellular Vesicles , Neoplasms , Biomarkers, Tumor/metabolism , Chromatography, Liquid , Digestion , Extracellular Vesicles/metabolism , Humans , Liquid Biopsy , Neoplasms/diagnosis , Neoplasms/metabolism , Proteomics/methods , Tandem Mass Spectrometry
18.
Methods Mol Biol ; 2546: 411-420, 2022.
Article in English | MEDLINE | ID: mdl-36127608

ABSTRACT

Plasma and serum are rich sources of proteins that are commonly used for clinical proteome profiling and biomarkers discovery. However, high-throughput plasma proteome profiling and quantitative analysis using mass spectrometry are challenging because of the large dynamic range of protein abundance and complexity. To overcome these challenges, we developed a convenient high-throughput workflow of depleted plasma using the 4D-Proteomics feature of the Bruker timsTOF Pro mass spectrometer with data-dependent (PASEF) and data-independent acquisition (diaPASEF) method that can potentially be used in a clinical proteome profiling and biomarker discoveries. This workflow is robust, optimal for high throughput, high proteome depth, and is reproducible. In our sample preparation steps, we used immuno-depletion steps to remove high-abundance plasma proteins, and without any further cleanup steps, we can use depleted plasma samples directly for enzymatic digestion. Immuno-depletion steps and 4D-Proteomics features of timsTOF Pro increase the plasma proteome depth, and accuracy with the identification of >800 protein groups.


Subject(s)
Proteome , Proteomics , Biomarkers/analysis , Blood Proteins/analysis , Plasma/chemistry , Proteome/analysis , Proteomics/methods
19.
Cell Rep ; 40(7): 111203, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977512

ABSTRACT

In the heart, protein kinase A (PKA) is critical for activating calcium handling and sarcomeric proteins in response to beta-adrenergic stimulation leading to increased myocardial contractility and performance. The catalytic activity of PKA is tightly regulated by regulatory subunits that inhibit the catalytic subunit until released by cAMP binding. Phosphorylation of type II regulatory subunits promotes PKA activation; however, the role of phosphorylation in type I regulatory subunits remain uncertain. Here, we utilize human induced pluripotent stem cell cardiomyocytes (iPSC-CMs) to identify STK25 as a kinase of the type Iα regulatory subunit PRKAR1A. Phosphorylation of PRKAR1A leads to inhibition of PKA kinase activity and increased binding to the catalytic subunit in the presence of cAMP. Stk25 knockout in mice diminishes Prkar1a phosphorylation, increases Pka activity, and augments contractile response to beta-adrenergic stimulation. Together, these data support STK25 as a negative regulator of PKA signaling through phosphorylation of PRKAR1A.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit , Induced Pluripotent Stem Cells , Adrenergic Agents/metabolism , Animals , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Serine-Threonine Kinases , Signal Transduction
20.
Sci Rep ; 12(1): 14167, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986069

ABSTRACT

Heart transplantation remains the definitive treatment for end stage heart failure. Because availability is limited, risk stratification of candidates is crucial for optimizing both organ allocations and transplant outcomes. Here we utilize proteomics prior to transplant to identify new biomarkers that predict post-transplant survival in a multi-institutional cohort. Microvesicles were isolated from serum samples and underwent proteomic analysis using mass spectrometry. Monte Carlo cross-validation (MCCV) was used to predict survival after transplant incorporating select recipient pre-transplant clinical characteristics and serum microvesicle proteomic data. We identified six protein markers with prediction performance above AUROC of 0.6, including Prothrombin (F2), anti-plasmin (SERPINF2), Factor IX, carboxypeptidase 2 (CPB2), HGF activator (HGFAC) and low molecular weight kininogen (LK). No clinical characteristics demonstrated an AUROC > 0.6. Putative biological functions and pathways were assessed using gene set enrichment analysis (GSEA). Differential expression analysis identified enriched pathways prior to transplant that were associated with post-transplant survival including activation of platelets and the coagulation pathway prior to transplant. Specifically, upregulation of coagulation cascade components of the kallikrein-kinin system (KKS) and downregulation of kininogen prior to transplant were associated with survival after transplant. Further prospective studies are warranted to determine if alterations in the KKS contributes to overall post-transplant survival.


Subject(s)
Heart Transplantation , Kallikrein-Kinin System , Blood Coagulation , Heart Transplantation/adverse effects , Humans , Kallikrein-Kinin System/physiology , Kininogens/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...